Rainfall kurtosis vs. HadCRUT4 Scatterplots

These scatterplots and Connected Scatterplots support a relationship between the kurtosis of annual rainfall at Manilla NSW and the de-trended smoothed HadCRUT4 series of global temperatures.

Scatterplot rainfall kurtosis vs. HadCRUT all data

The raw data, as observed

The first scatterplot compares (y-axis) all the calculated unsmoothed values of kurtosis of annual rainfall at Manilla, NSW with (x-axis) the unsmoothed values of the HadCRUT4 series of global near-surface temperature at those dates.
[I have plotted rainfall values lagged by five years on all of the scatterplots shown. This lagging makes little difference to the first two scatterplots.]

On this first graph, the fitted linear trend barely supports a positive relation of kurtosis to temperature. The slope is low (1.05) and the R-squared only 0.16. There is an aberrant cloud of points in the top left corner.

Scatterplot rainfall kurtosis vs. HadCRUT detrended (all data)

The raw data, HadCRUT4 de-trended

This graph takes a first step towards a better model for the relationship: the secular trend of the temperature series (that is, the global warming) is removed. For comparison, I have not re-scaled the x-axis.
Although still very weak, the relation is much enhanced. The slope (2.35) is twice as steep and the R-squared (0.24) increased by 50%.

Connected Scatterplot rainfall kurtosis vs. HadCRUT all data

Smoothed data, HadCRUT4 de-trended

This third graph uses smoothed data. The HadCRUT4 series is  “decadally-smoothed” (as published) with a 21-point binomial filter to remove high frequency noise. The rainfall data, already damped by its 21-year sampling window, has been further smoothed with a 9-point Gaussian filter.
This graph is a Connected Scatterplot, that shows the trajectory of the rainfall-temperature relation with the passing of time.

Line chart rainfall kurtosis vs. HadCRUT (detrended)Smoothing both data sets has given a much closer relation. The R-squared value is almost doubled again, to 0.43, and the slope is increased to 3.70. The date labels show that the relation before 1910 was different from that at later dates. (This had also been clear in the Dual axis line chart, copied here, from the post “Rainfall Kurtosis Matches HadCRUT4”.)

Connected Scatterplot rainfall kurtosis vs. HadCRUT from 1908

Smoothed data, HadCRUT4 de-trended, from 1908 to 2002

In this final graph, I have discarded the first eleven years. The linear regression based on smoothed values from 1908 to 2002 has a steep slope of 5.21 and a respectable R-squared value of 0.84.

I had prepared similar graphs for lag values of rainfall kurtosis from zero up to nine. The lag value of five years tends to maximise the slope and the R-squared values.
Choice of a five-year lag tends to form hair-pin loops in the trace, while shorter lags give wider clockwise loops and longer lags give wider anti-clockwise loops.
The lag value of five years implies that the Manilla annual rainfall kurtosis value for a given year matches the de-trended HadCRUT value that occurs five years later.

[Back to the main post on this topic: “Rainfall kurtosis matches HadCRUT4”.]

Advertisements

Rainfall kurtosis matches HadCRUT4

Line chart rainfall kurtosis vs. HadCRUT (detrended)

The kurtosis of annual rainfall at Manilla NSW forms a time-series that matches the time-series of global surface temperature when de-trended.

Features of the data

Data sources, noted on the graph, are specified below. The best match is achieved by decadal smoothing, by scaling 1.0 units of kurtosis to 0.16 degrees of temperature, and by lagging the rainfall data five years.

Closeness of the match

Although both variables have irregular traces, their patterns are almost the same. They begin and end very high, have a broad peak near 1943, and are low in the 1910’s, 1920’s, 1950’s, 1960’s and 1970’s.
The match is very close for ninety years from 1915 to 2005, except for one decade (at 1972). In all this time, both the values and the slopes (as scaled) agree. [See the Note below “1991-1992”.]

Before 1915, the patterns do not match well, but they remain similar. Both traces descend rapidly together from 1903 to 1910. The initial peak in the rainfall trace at 1903 (actually 1898) is similar in height (as scaled) to a peak of the de-trended temperature trace just off the graph at 1879.

Discovering the pattern match

I was seeking a robust measure of the occurrence of extreme values in annual rainfall at Manilla, NSW. As kurtosis is just such a measure, I calculated it. I then plotted out the time-series, as shown here. It reminded me of the well-established time-series of smoothed HadCRUT4 global near-surface temperature. In particular, I recalled a locally-dominant peak near 1940.

Line chart rainfall kurtosis vs. HadCRUT
Simply reconciling the vertical scales of the two time-series gave me the second graph.
While not matching in details, the two curves remain very close from 1940 to 1995. Matching over the whole rainfall record is prevented by a difference in trend. While the rainfall kurtosis has no trend, the HadCRUT4 curve has a secular trend rising at half a degree per century (known as “global warming”).
To extend and improve the match, I subtracted the linear trend from the global temperature curve, and lagged the rainfall points by five years. The first graph is the closely-matching result.

What it means

As evidence of extreme behaviour in climate

It is said that more extremes in climate will occur as the world becomes warmer. The evidence is not strong. Most data sets are overwhelmed by noise, and “extreme” is seldom defined with rigor.
In the present case, I believe that the definition of “extreme” that I use is sound: that is, the kurtosis of a frequency-distribution. Only the instability of kurtosis when based on small samples is an issue.

My rainfall data set that displays more and less extreme behaviour is not general but local. It can merely suggest that data elsewhere may reveal functional relationships.

Connected Scatterplot rainfall kurtosis vs. HadCRUT from 1908A very strong and persistent empirical relationship is shown by the graphical logs above. In another post, “Rainfall Kurtosis vs. HadCRUT4  Scatterplots”, I show scatterplots like this in support of it.

De-trended global temperature

This strong link between local annual rainfall kurtosis and global climate has a surprising feature. Although this extreme behaviour seems to relate to global temperature, it does not relate to global warming! It relates to a temperature trace from which the global warming trend has been removed. Times of high kurtosis, denoting enhanced extremes, correspond to times when the global temperature was highest above trend. Such times occurred not only in the twenty-first century, but equally in the nineteenth century. There was another (widely-known), lower peak in de-trended global temperature near 1940: at that time also kurtosis was above normal.

Should global temperature remain static for a time, it would be falling rapidly below its rising trend. According to this data set, that should bring reduced extreme behaviour in annual rainfall at Manilla.


Data Sources

(i) Global temperature time-series

From the three available century-long time series of global near-surface temperature I have chosen to use HadCRUT4, published by the British Met Office Hadley Centre. The link is here.

I selected from the section: “HadCRUT4 time series: ensemble medians and uncertainties”.
From this, I downloaded two files:
(i) “Global (NH+SH)/2, annual”;
(ii) “Global (NH+SH)/2, decadally smoothed”.
[The “Decadally smoothed” data supplied is annual data smoothed with a 21-point binomial filter.]
From each data file, I used only the first column: the year date, and the second column: the median value.

I established the secular trend of global warming using the linear trend function in Charts for “Excel”. I found the linear trend of the whole HadCRUT4 annual series data (1850 to 2016) to be:

y = 0.005x – 0.52.

I then subtracted the annual value at the trend line from the decadally smoothed HadCRUT4 value to get the de-trended smoothed value shown on the first graph.

(ii) Kurtosis of Manilla annual rainfall

The rainfall data is that for Manilla Post Office, Station 055031 of the Australian Bureau of Meteorology. Station 055031 functioned without gaps from 1883 to March 2015. Since then, the official record is fragmentary.
I found kurtosis values for annual rainfall by using the (excess) kurtosis function in “Excel”. I used sub-populations of 21 successive years, referred to the median year. I found values for the years 1893 to 2006. I smoothed these values with a 9-point gaussian filter (yielding similar smoothing to that of HadCRUT4). Smoothing reduced the plottable years to those from 1897 to 2002.

Manilla yearly rainfall history: four momentsI posted a line graph of this kurtosis data earlier, in “Moments of Manilla’s Yearly Rainfall History”.


Note: 1991-1992

The most striking match in the graph is that both traces pause at 1991-1992 within a two-decade-long steady rapid rise. That pause in the global temperature series has been attributed with little doubt to the injection into the atmosphere of seventeen million tonnes of sulphur dioxide by the eruption of Mount Pinatubo in the Philippines. That eruption cannot have affected the rainfall kurtosis five years earlier.

Global Warming Bent-Line Regression

HadCRUT global near-surface temperatures

HadCRUtemp2lineThis graph, posted with permission, shows a bent line fitted to the HadCRUT annual data series for global near-surface temperature. Professor Thayer Watkins of San Jose State University Department of Economics posted it on his blog about 2009.

HadCRUTsmoothWithout knowing of this work, I constructed the second graph. I used data from the same HadCRUT source, but a data set smoothed by the authors.

In April 2013 I posted it to a forum thread in”weatherzone”.

Next, I added to that graph a logarithmic plot of global carbon emissions, similarly fitted with a series of straight trend lines.

Log from 1850 of world surface air temperature and carbon emissionsThis I included in posts to several forums: in a post to “weatherzone”, in a post to the Alternative Technology Association forum, and finally in a post to this blog.

Both Professor Watkins and I have fitted bent lines to the data. I fitted the lines by eye (for which I was accused of “cherry-picking”). Professor Watkins used an explicit process of Bent-Line Regression, minimising the deviations by the method of least-squares. Like me, he initially chose by eye the dates of the change points where the straight lines meet. But he then adjusted them so as to minimise the least squares deviations.
[See notes below on the method of Bent-Line Regression.]

The trend lines and change points are practically the same in the Thayer Watkins and the “Surly Bond” graphs:
1. (Up to Down) TW: 1881; SB: 1879.
2. (Down to Up) TW: 1911; SB: 1909.
3. (Up to Down) TW: 1940; SB: 1943.
4. (Down to Up) TW: 1970; SB: 1975.
As I said at the time, once straight trend lines are chosen, the dates of change points to fit this data series closely do not allow of much variation.

Relation to the IPO (or PDO) of the Pacific

Not by coincidence, Watkins and I both went on to relate the multi-decadal oscillations of Pacific Ocean temperatures to the global near-surface average temperatures.

My approach

I merely plotted my chosen global temperature change points on to the Pacific graphs (I chose to cite the IPO (Inter-decadal Pacific Oscillation)). In two posts I noted (i) the way the change points in the HadCRUT global temperature series were close to those in the IPO, and (ii) the way the IPO seemed able to explain why the trend in global warming was “bent” in 1943 and 1975 but, in that case, could only sharpen the bends of 1910 and 1880.

Professor Watkins’ approach

AGT_PDO7Professor Watkins did a separate Bent Line Regression Analysis on the Pacific graphs (He chose to cite the earlier-developed PDO (Pacific inter-Decadal Oscillation)). His analysis “A Major Source of the Near-Sixty Year Cycle in Average Global Temperatures is the Pacific (Multi)Decadal Oscillation” is here.

He admits the match is poor, with various lags and a different period. He concludes:
“Thus while the Pacific (Multi)Decadal Oscillation appears to be involved in the cycles of the average global temperature there have to be other factors also involved.”

The significance of the IPO

Continue reading

3-year trends to August 2010

Parametric plots of smoothed climate variables at Manilla
“Summer retreated from drought”

Trends to August 2010.

Manilla’s recent climate continues to be marked mainly by cloudier skies and a narrower daily temperature range than in the 12-year averages.
In the current plots we see final smoothed trends for summer (DJF) of 2009-10.

Daily maximum temperature anomaly is shown on the x-axis of each plot. The minimum value in Feb 2008 (-1.61) and maximum value in Nov 2009 (+1.35) are also the extremes (in blue) of the smoothed data set. In summer 2009-10 the smoothed temperature anomaly fell much faster than it had risen in the previous winter and spring. During autumn the max temp anomaly was near zero, and the raw value for August is so low (cold) the scale has had to be extended.

Monthly total rainfall anomaly is on the y-axis (inverted) of the first graph. It showed a very mild drought throughout the last winter, spring, and summer. Autumn seems to have been less droughty, much like the previous autumn, but with the opposite trend. Recently, July 2010 was very wet, but August rainfall was normal.

The anomaly of per cent cloudy mornings fell during winter 2009 as the maximum temperature anomaly rose. During summer 2009-10 it rose again as the maximum temperature anomaly fell. However, for a given maximum temperature anomaly the cloudiness anomaly was now more positive (it was cloudier). Since the end of summer, skies have been extremely cloudy

On the graph for early morning dew point anomaly, the final year’s data plots like that of the cloudiness graph. However, dew point anomalies were not so positive: in winter and spring 2009 they were quite strongly negative. By autumn 2010, dew points seem normal, and recent values are high (humid climate).

For daily temperature range anomaly, again, the last year’s pattern on this graph is like that on the previous two graphs. In this case, values low on the graph are negative anomalies, representing narrow daily temperature ranges. For a given maximum temperature anomaly, the anomaly of daily temperature range was lower during the summer than it had been the previous winter.

(Note on the “Macquarie Island” label. This August  Manilla’s anomalously low maximum temperature (16.8°) is actually much higher than that of Macquarie Island (5.0°), and the anomalously narrow daily temperature range (11.9°) is still much wider than that of Macquarie Island (3.5°).)

In the case of daily minimum temperature anomaly, summer 2010 began with a maximal value, and the value stayed high through the season. Values may have been lower in autumn, then they seem to have risen even higher (very warm nights).

World-wide low temperature

At Manilla, in early 2008  there were record low values of daily minimum temperature, daily maximum temperature and subsoil temperature. These did NOT come with high rainfall and high dew point as would occur in a “flooding rains” peak of the quasi-biennial oscillation. They match low temperature at that time world-wide.

Subsoil temperature anomalies have remained close to zero for 17 months, despite big changes in the anomalies of other temperatures.

Note:
Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.