3-year trends to November 2018

Not So Moist

3-year trends to November 2018

November raw anomaly data (orange)

In November 2018, the top four graphs show that raw values of moisture anomalies moved up away from the moist values of October, but not as far as earlier drought values.
For temperature anomalies, daily maximum and subsoil rose again, while, daily minimum fell from its extremely high value

 Fully smoothed data (red)

At this time, Manilla was entering an extreme drought. Each of the smoothed climate anomalies shown on these graphs contributed to the drought to some degree, and with more or less lag.

By May 2018, the last date for which data can be fully smoothed (as described below), most variables had not yet peaked in their contribution. Several more months of data will reveal the complete cycle into and out of drought.
The anomaly of daily maximum temperature (x-axis, all graphs) had already peaked in March 2018. (In the 2002 drought daily maximum temperature had peaked after the peak of minimum rainfall, not before.)
In May 2018 the rainfall anomaly was still becoming more negative, to a record low value of minus 28.3 mm . June and July rainfall anomalies seemed likely to be similar after smoothing.
Cloudiness was decreasing towards a minimum (perhaps in August 2018) without becoming much less cloudy than normal.
Dew point anomaly was still decreasing, and seemed likely to reach a record low value about August.
The anomaly of daily temperature range had been at a (high) level characteristic of drought since the winter of 2017. It had changed little since, and seemed likely to peak in June 2018 without approaching the record value of July 2002.
The anomaly of daily minimum temperature has a cryptic relation to drought. In this case, the value peaked sharply in February 2018 before falling rapidly. It may have reached a minimum about August 2018.
The anomaly of subsoil temperature was rising rapidly in May 2018, and seemed likely to peak about July, lagging four months behind the daily maximum temperature anomaly.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to October 2018

Moist

3-year trends to October 2018

October raw anomaly data (orange)

In October 2018, raw values of three anomalies moved low on the graphs, showing more moisture . They were: cloudy days percent, dew point, and (narrow) daily temperature range. Rainfall increased from very low back to normal.
For temperatures, daily maximum fell to normal, daily minimum rose extremely high, and subsoil temperature fell very low.

 Fully smoothed data (red)

Fully smoothed data for April 2018 did not break the previous month’s record for daily maximum temperature anomaly (x-axis), as I had thought it would.
The April smoothed rainfall anomaly of minus 27.8 mm (top left graph) beat the 21st-century record minus value of 27.1 mm set in July 2002.
In April 2018, the trend for decreasing rainfall with increasing daily maximum temperature (top left graph), which had had lasted eight months, altered as temperature began to fall.. At that date, the three other moisture anomaly variables were moving rapidly up the graphs towards drought.
Daily minimum temperature anomaly was falling from a recent maximum in February. Subsoil temperature anomaly continued its sustained rapid rise.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to September 2018

Equable, less sunny

3-year trends to September 2018

September raw anomaly data (orange)

Like last month, climate anomalies were in retreat from drought. All moisture measures, except rainfall, moved lower on the graphs. Both the daily temperature range and the percent of cloudy mornings recovered from extreme values.

 Fully smoothed data (red)

Fully smoothed data for March 2018 broke the previous month’s record for daily maximum temperature anomaly (x-axis), advancing from +1.58 to +1.63 degrees. The March smoothed rainfall anomaly of −27.1 mm (top left graph) equaled the 20th-century record minus value set in July 2002. Both these records may be broken by fully-smoothed figures for April 2018.
By March 2018, the trend for decreasing rainfall with increasing daily maximum temperature (top left graph) had lasted eight months. Other variables had different patterns. Most were just beginning to move towards drought after several months with little change.
Daily minimum temperature, after six months of sustained rise, then began to fall. Subsoil temperature anomaly was rising, lagging daily maximum temperature anomaly by five months.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to August 2018

Cooler and Moister

3-year trends to August 2018

August raw anomaly data (orange)

For now, a retreat from drought is shown by lower temperature, particularly at night, and more rain. Dew point remains very low.

 Fully smoothed data (red)

The summer season, ending in February 2018, can now be fully smoothed. February has a new 21st century record [in blue] for smoothed daily maximum temperature anomaly of +1.58° [x-axis all graphs]. This is bound to be broken by smoothed values for March, and perhaps for April. The record for negative rainfall anomaly (set in the drought of July 2002) is also likely to be broken in March.

Through the summer, all three temperatures rose, and rainfall fell. Other variables were static.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to July 2018

Hot and Sunny

3-year trends to July 2018

July raw anomaly data (orange)

The on-going drought was reflected in moisture anomalies being near the top of the upper four graphs. In the case of cloudiness (top right), persistently cloudy skies became sunny in one single step.
Both daily maximum temperature and subsoil temperature were very high. As daily minimum temperature (lower left) was normal, the extreme daily temperature range (centre right) was due to the high daily maximum temperature (x-axes) alone.

 Fully smoothed data (red)

The last fully-smoothed data is for January 2018. All variables, except subsoil temperature, continued trends set in the spring. While daily maximum temperature and rainfall were already trending up and to the right towards drought, other variables were not at this time.

Daily maximum temperature anomaly reached a record high (smoothed) value of +1.46°.
Rainfall anomaly approached a record low (smoothed, 21st-century) value.
Cloudiness was static near its normal maximum.
Dew point anomaly was low but slowly rising.
Daily temperature range anomaly was high and steady.
Daily minimum temperature anomaly was high and rising.
Subsoil temperature anomaly, which had been falling, began to rise quite rapidly.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to June 2018

Now in drought

Three year trends to June 2018

June raw anomaly data (orange)

The raw rainfall anomaly for June 2018 was very low (high on the graph), as was that of the month before. This placed June in drought, although the other moisture indicators were nearer to normal. Daily maximum and minimum temperatures were also not far above normal, but subsoil temperature was very high.

 Fully smoothed data (red)

The last fully-smoothed data is for December 2017. All variables, except subsoil temperature, continued trends set in the spring.

Daily maximum temperature anomaly approached a record high value.
Rainfall anomaly approached a record low value.
Cloudiness was static near its normal maximum.
Dew point anomaly was low but slowly rising.
Daily temperature range anomaly was high but slowly falling.
Daily minimum temperature anomaly was high and rising.
Subsoil temperature anomaly, which had been falling, began to rise.


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.

3-year trends to May 2018

Warm and Very Dry

3-year trends to May 2018

May raw anomaly data (orange)

The raw maximum temperature anomaly for May 2018 was rather high, as was that of the subsoil. The anomaly of daily minimum temperature was low. Very low moisture was shown by the rainfall, daily temperature range, and dew point anomalies, but cloudiness was normal.

 Fully smoothed data (red)

Fully-smoothed data are now available for the spring months (SON) of 2017. In that season, all three temperatures were within their normal range. Both air temperatures were rising, but subsoil temperature was falling.
Rainfall was moving up the graph to less than normal (i.e. arid). The other three moisture measures were moving down their graphs towards humidity: cloudiness more than normal (i.e. humid), dew point still less than normal (i.e. arid), and daily temperature range still wider than normal (i.e. arid).


Note:

Fully smoothed data – Gaussian smoothing with half-width 6 months – are plotted in red, partly smoothed data uncoloured, and raw data for the last data point in orange. January data points are marked by squares.
Blue diamonds and the dashed blue rectangle show the extreme values in the fully smoothed data record since September 1999.

Normal values are based on averages for the decade from March 1999.* They appear on these graphs as a turquoise (turquoise) circle at the origin (0,0). A range of anomalies called “normal” is shown by a dashed rectangle in aqua (aqua). For values in degrees, the assigned normal range is +/-0.7°; for cloudiness, +/-7%; for monthly rainfall, +/-14 mm.

 * Normal values for rainfall are based on averages for the 125 years beginning 1883.