As a long-term instrumental record of global temperature, the HadCRUT4 series may be the best we have. [See Ole Humlum’s blog in the notes below.]
I like to use the published smoothed annual series of HadCRUT4. I find that this smoothing gets rid of the “noise” that makes graphs about global warming needlessly hard to read. I used the smoothed HadCRUT series to point out the curious inverse relation between the rate of warming and the rate of growth of carbon emissions in this post from 2014. I will refer again to that post in discussing the use of bent-line regression to describe global warming.
The Met Office Hadley Centre published the smoothing procedure that they used for the time series of smoothed annual average temperature in the HadCRUT3 data set. The smoothing function used is a 21-point binomial filter. The weights are specified in the link above.
The authors discuss the fudge that they use to plot smoothed values up to the current year, even though a validly smoothed value for that year would require ten years of data from future years. Their method is to continue the series by repeating the final value. They had added to the uncertainty by using a final value from just part of a year.
They relate how this procedure had caused consternation when the smoothed graph published in March 2008 showed a curve towards cooling, due to the final value used being very cool.
They show the effect by displaying the graph for that date.
They maintain that the unacceptable smoothed curve (because it shows cooling, not warming) is due mainly to using a final value from an incomplete year, saying:
“The way that we calculate the smoothed series has not changed except that we no longer use data for the current year in the calculation.”
That web-page is annotated:
“Last updated: 08/04/2008 Expires: 08/04/2009”
However, this appears to be the current procedure, used with the HadCRUT4 data set.
For my own interest, I plotted the values from 1990 to 2016 of the annual series of HadCRUT4, averaged over northern and southern hemispheres. [Data sources below.]
On my graph (above), all points 1990 to 2016 are as sourced. I have plotted raw values 2017 to 2026 (uncoloured) as I believe they are used in the smoothing procedure. I have also left uncoloured the smoothed data points from 2007 to 2016, to indicate that their values are not fully supported by data.
I agree with Ole Humlum that it is very good of the Met Office to come clean on the logical shortcomings of their procedure for smoothing, but it would be even better if they ceased plotting smoothed points when the smoothing depends on data points for future years.
In my monthly series of parametric plots of smoothed monthly values of climate anomaly variables, I have faced the same problem. I smooth using a 13-point Gaussian curve. My solution is to plot “fully-smoothed” data points (in colour) up to six months ago. That gives a consistent mapping up to that date. The fifth month before now (plotted uncoloured) is smoothed with an 11-point Gaussian and so on, up to the latest month with a necessarily unsmoothed value. A recent example of my parametric plots is “Hot and dry records in January 2019” .
Notes
1.
Ole Humlum’s blog “Climate4you”
[See: Index\Global Temperature\Recent global air temperature change, an overview\]
2.
HadCRUT4 data
Source of raw annual values:
Source of smoothed annual values:
[5 June 2019. Sorry, I see that both of those links yield “Not found.” Isn’t the internet wonderful! That is the way of the future, folks. Every link will break, sooner rather than later.]