Global Warming Bent-Line Regression

HadCRUT global near-surface temperatures

HadCRUtemp2lineThis graph, posted with permission, shows a bent line fitted to the HadCRUT annual data series for global near-surface temperature. Professor Thayer Watkins of San Jose State University Department of Economics posted it on his blog about 2009.

HadCRUTsmoothWithout knowing of this work, I constructed the second graph. I used data from the same HadCRUT source, but a data set smoothed by the authors.

In April 2013 I posted it to a forum thread in”weatherzone”.

Next, I added to that graph a logarithmic plot of global carbon emissions, similarly fitted with a series of straight trend lines.

Log from 1850 of world surface air temperature and carbon emissionsThis I included in posts to several forums: in a post to “weatherzone”, in a post to the Alternative Technology Association forum, and finally in a post to this blog.

Both Professor Watkins and I have fitted bent lines to the data. I fitted the lines by eye (for which I was accused of “cherry-picking”). Professor Watkins used an explicit process of Bent-Line Regression, minimising the deviations by the method of least-squares. Like me, he initially chose by eye the dates of the change points where the straight lines meet. But he then adjusted them so as to minimise the least squares deviations.
[See notes below on the method of Bent-Line Regression.]

The trend lines and change points are practically the same in the Thayer Watkins and the “Surly Bond” graphs:
1. (Up to Down) TW: 1881; SB: 1879.
2. (Down to Up) TW: 1911; SB: 1909.
3. (Up to Down) TW: 1940; SB: 1943.
4. (Down to Up) TW: 1970; SB: 1975.
As I said at the time, once straight trend lines are chosen, the dates of change points to fit this data series closely do not allow of much variation.

Relation to the IPO (or PDO) of the Pacific

Not by coincidence, Watkins and I both went on to relate the multi-decadal oscillations of Pacific Ocean temperatures to the global near-surface average temperatures.

My approach

I merely plotted my chosen global temperature change points on to the Pacific graphs (I chose to cite the IPO (Inter-decadal Pacific Oscillation)). In two posts I noted (i) the way the change points in the HadCRUT global temperature series were close to those in the IPO, and (ii) the way the IPO seemed able to explain why the trend in global warming was “bent” in 1943 and 1975 but, in that case, could only sharpen the bends of 1910 and 1880.

Professor Watkins’ approach

AGT_PDO7Professor Watkins did a separate Bent Line Regression Analysis on the Pacific graphs (He chose to cite the earlier-developed PDO (Pacific inter-Decadal Oscillation)). His analysis “A Major Source of the Near-Sixty Year Cycle in Average Global Temperatures is the Pacific (Multi)Decadal Oscillation” is here.

He admits the match is poor, with various lags and a different period. He concludes:
“Thus while the Pacific (Multi)Decadal Oscillation appears to be involved in the cycles of the average global temperature there have to be other factors also involved.”

The significance of the IPO

Continue reading

HadCRUT Global Temperature Smoothing

Graph of recent HadCRUT4

As a long-term instrumental record of global temperature, the HadCRUT4 series may be the best we have. [See Ole Humlum’s blog in the notes below.]
I like to use the published smoothed annual series of HadCRUT4.  I find that this smoothing gets rid of the “noise” that makes graphs about global warming needlessly hard to read. I used the smoothed HadCRUT series to point out the curious inverse relation between the rate of warming and the rate of carbon emissions in this post from 2014.  I will refer again to that post in discussing the use of bent-line regression to describe global warming.

The Met Office Hadley Centre published the smoothing procedure that they used for the time series of smoothed annual average temperature in the HadCRUT3 data set. The smoothing function used is a 21-point binomial filter. The weights are specified in the link above.
The authors discuss the fudge that they use to plot smoothed values up to the current year, even though a validly smoothed value for that year would require ten years of data from future years. Their method is to continue the series by repeating the final value. They had added to the uncertainty by using a final value from just part of a year.
They relate how this procedure had caused consternation when the smoothed graph published in March 2008 showed a curve towards cooling, due to the final value used being very cool.
They show the effect by displaying the graph for that date.
They maintain that the unacceptable smoothed curve (because it shows cooling, not warming) is due mainly to using a final value from an incomplete year, saying:
“The way that we calculate the smoothed series has not changed except that we no longer use data for the current year in the calculation.”
That web-page is annotated:
“Last updated: 08/04/2008 Expires: 08/04/2009”
However, this appears to be the current procedure, used with the HadCRUT4 data set.

For my own interest, I plotted the values from 1990 to 2016 of the annual series of HadCRUT4, averaged over northern and southern hemispheres. [Data sources below.]

On my graph (above), all points 1990 to 2016 are as sourced. I have plotted raw values 2017 to 2026 (uncoloured) as I believe they are used in the smoothing procedure. I have also left uncoloured the smoothed data points from 2007 to 2016, to indicate that their values are not fully supported by data.

I agree with Ole Humlum that it is very good of the Met Office to come clean on the logical shortcomings of their procedure for smoothing, but it would be even better if they ceased plotting smoothed points when the smoothing depends on data points for future years.
In my monthly series of parametric plots of smoothed monthly values of climate anomaly variables, I have faced the same problem. I smooth using a 13-point Gaussian curve. My solution is to plot “fully-smoothed” data points (in colour) up to six months ago. That gives a consistent mapping up to that date. The fifth month before now (plotted uncoloured) is smoothed with an 11-point Gaussian and so on, up to the latest month with a necessarily unsmoothed value.


Ole Humlum’s blog “Climate4you”

[See: Index\Global Temperature\Recent global air temperature change, an overview\]

HadCRUT4 data
Source of raw annual values:

Source of smoothed annual values:

Warming and Carbon Emissions: Shifting Trends

Log from 1850 of world surface air temperature and carbon emissions

Trends in global temperature and in carbon emissions changed sharply several times during the last 160 years.
One question is at the heart of concern about human influence on climate: how does global temperature relate to human-caused emissions of carbon dioxide?
This graph shows that relation: it does not explain it.


I display two well-established data sets:
1. The HadCRUT4 record of estimated global surface air temperature. Values are expressed as the anomaly from 1961-1990 mean values in degrees celsius.(See Note 1. below.)
2. Global Fossil Fuel Carbon Dioxide Emissions, tabulated and graphed as tonnes of carbon (See Note 2. below.)) by the Carbon Dioxide Information Analysis Center, Oak Ridge.(See Note 3. below.)

The format of the data is given in Note 4. below.

Multi-decadal linear trends

Trends in carbon emissions

Throughout this time, the rate of carbon emissions increased exponentially, but at rates that changed abruptly at certain dates. In units of log-cycles per century, the rates were:

From 1850: 1.97 units;
From 1913: 0.28 units;
From 1945: 2.14 units;
From 1973: 0.77 units. Continue reading