Manilla’s Yearly Rainfall History

Lately, Manilla’s rainfall is normal, and more reliable
than it ever was.

Manilla yearly rainfall record, 21-yr smoothed

Yearly rainfall totals

The first graph helps to make sense of the history of Manilla’s rainfall, using the totals for each year. The actual figures make little sense, jumping up or down from one year to the next. The figures here have been calmed down. First, I replaced each yearly figure by an average of twenty-one years, ten years before and ten years after the date. Then I smoothed that figure some more.
The pattern is plain. There were periods in the past when there was much more or less rain than usual.
In four decades the rainfall was some 30 mm higher than normal: the 1890’s, 1950’s, 1960’s and 1970’s. In four other decades, the rainfall was some 30 mm lower than normal: the 1900’s, 1910’s, 1920’s and 1930’s.
Rainfall here collapsed about 1900. The collapse was was widespread, as was recognised half a century ago.

Using the average line drawn across the graph (at 652 mm), you can see that rainfall was below average from 1902 to 1951: almost exactly the first half of the twentieth century. After 1951, rainfall was above average for the 44 years to 1995. Since then, the annual rainfall (as plotted) has been remarkably close to the 132-year average.
Present rainfall will seem low to those who remember the 1970’s, but the 1970’s were wet times and now is normal. Few alive now will remember that Manilla’s rainfall really was much lower in the 1930’s.

Manilla yearly rainfall scatters.

Yearly rainfall scatter

The second graph also groups the data twenty-one years at a time. It shows the scatter of yearly rainfalls in each group. More scatter or spread means the rainfall was less reliable. Comparing the graphs, times of high scatter (very unreliable rainfall) were not times of low rainfall, as one might think. Annual rainfall scatter and rainfall amount were not related.
Times of very unreliable rainfall came in 1919 (dry), 1949 (normal) and 1958 (wet). Times of reliable rainfall came in 1908 and 1936 (both dry). However, by far the most reliable rainfall came since 1992, extending to 2004 and likely up to this year.

Global warming

It has been argued that human-induced climate change will cause climatic extremes to happen more often in future. Already, when any extreme climate event is reported, someone will say that climate change has caused it.

The present steady rise in global temperature began about 1975. Does this Manilla rainfall record show more extreme events since that date? Definitely not! Quite the contrary. Continue reading

More Droughts After Heavier Rains III.

Graphical log of errors when droughts are predicted from rains

Droughts and flooding rains at Manilla NSW were related in a way that is remarkable and unexpected.

Part III. Predicting drought from heavy rain

[Back to Part II: Scatter-plots]

The graph above is derived from the first graph in this series (copied here) by using the blue regression trend-line from the scatter plot of selected data (also copied here). (For data details, sLog of 1-year droughts and 5-year lagged heavy rainfallsee Note 1, below.)

The equation of the trend line, y = 0.030x is used AS IF to use the daily rainfall excesses to predict the drought frequency five years later. The graph shows the “error” of this “prediction”. (In Note 2, below, I concede that this data set could not support such prediction.)
As expected from the previous graphs, the “prediction” is accurate at most data points to 1975. It is correct to the nearest percentage whole number at nine of the eighteen points. From 1940 to 1955, droughts are uniformly more frequent than predicted. After 1975, the error curve swings wildly up and down.

Could droughts have been predicted from heavy rainfalls?

Scatter-plot 1890 to 1975

By about 1915, it is conceivable that this relationship could have been discovered, either by analysis of such data, or by modelling of the climate system. Then, the data for the next 20 years, up to 1935, would seem to confirm it. Data from 1940 to 1955 would cause doubts, but data from 1960 to 1975 would restore confidence. Then the utter failure of the model in the following four decades would have led to its abandonment, at least for the time being.

Climate shifts of 1975

Continue reading

More Droughts After Heavier Rains II.

Scatter-plot 1890 to 1975

Droughts and flooding rains at Manilla NSW were related in a way that is remarkable and unexpected.

Part II. Scatter-plots

[Back to Part I: Graphical logs]

I have made scatter plots to see how much correlation there is between the two data sets: the frequency % of severe 12-month drought and the total decadal daily rainfall excesses over 50 mm, when lagged five years. (For data details, see Note 1, below.)

A. The first 70% of the data

The first scatter-plot includes only the first 70% of the data, from 1890 to 1975, which showed matching patterns on the graphical log copied below. I have broken the data points into two groups: the aberrant group 1940 to 1955 (red) and the fourteen best-matched points (blue). The trend line that best fits those fourteen points is y = 0.028x + 0.407, with R-squared = 0.898. However, I have been able to fit the trend line y = 0.030x, that shows y proportional to x, without making R-squared worse than 0.892.
Similarly, the four decades centred on 1940, 1945, 1950 and 1955, had y = 0.050x, with R-squared equal to 0.902.

Expressed in words: for fourteen of the first eighteen data points, the frequency % of severe 12-month droughts remained close to 0.03 times the decade total of daily rainfall (>50 mm/day) measured five years earlier. For the other group of four adjacent points, the number was not 0.03, but 0.05.

B. All the data

Scatter-plot 1890 to 2010

The second scatter plot shows data for all 25 (five-year overlapped) decades. There is a “shot-gun” pattern, as expected. Continue reading

More Droughts After Heavier Rains I.

Log of 1-year droughts and 5-year lagged heavy rainfalls

Droughts and flooding rains at Manilla NSW were related in a way that is remarkable and unexpected.

Part 1. Graphical logs

As the first graph shows, for most of the 130-year record year-long droughts came in direct proportion to very heavy daily rainfall five years earlier. (For data details, see Note 1, below.)
The match between these two variables is astonishing. Both are based on rainfall readings, but they are scarcely related. Excessive daily rainfalls are transient extreme weather events; 12-month droughts are an aspect of climate.

Mackellar’s “Droughts and flooding rains”

Dorothea Mackellar’s famous line * is more apt for this graph than for other graphs where I use “flooding rains” to mean periods unlike drought. (See Note 2. below.) The rains and droughts that I plot here both bring hardship. Severe droughts lasting one year are among the worst of droughts: long enough to use up reserves, and not so long as to be eased by periods of rain. The daily rainfall events plotted are the ones that cause damaging floods.

Features of the graphical log

Log of 1-year droughts and heavy rainfalls

This second graph shows the data at the actual dates. Although the data points for the decade excess of heavy daily rainfall and those for frequency % of 12-month droughts have a matching pattern for much of the record, the pattern is offset. Heavy rainfall points come five years earlier than corresponding drought points. Notice that the heavy rainfalls do not (except in 1980) come squarely in gaps between droughts.
Lagging the rainfall points by five years (as in the first graph) makes some matches almost exact. Such matches occur at all data points from 1890 to 1975, except those from 1940 to 1955, where drought frequencies are relatively higher. Both variables show a two-decade-long, slow decline from 1905 to 1925. At the chosen scales, the amplitude of corresponding rises and falls are usually similar as well.
After 1975, daily rainfall oscillates through a wide amplitude with a twenty-year period, while the frequency % of drought varies Continue reading

Very Wet Days at Manilla: Decade Excesses

Log of decade totals of rainfall excess, Manilla, NSW Last month I posted a complete log of days at Manilla that had more than 50 mm of rainfall.
I call days that have more than 50 mm of rainfall “very wet days”. At Manilla, on the average, these have come only once per year. Days with more than 50 mm of rainfall have no special meaning, but they can be taken as a rough indication that local flooding, or even general flooding, is likely: the “Flooding Rains” of Dorothea Mackellar.*
The graph I posted did not show whether these very wet days, likely to cause floods, had a bigger effect at some times than at others. This graph shows that.

Since it is only the excess rainfall that runs off, leading to flooding, I have subtracted 50 mm from each “very wet day” rainfall amount. Then I have summed all such excesses for each half-decade. I summed the half-decades in pairs to give a decade sum (in mm) centered on the years 1885, 1890, 1895, etc. For example, the decade centered on 1925 had a total of daily rainfall excesses of 157 mm. (Values for 1880-84 were estimated from those for 1883 and 1884.)
Some decades had very high values of excess rainfall: there was about 250 mm in the decades centered on 1900, 1960, 1965, 1980, and 2000. There were very low values, below 100 mm, in the decades centered on 1885, 1890, 1950, and 1990. There appears to be no trend.

Note added June 2015.

The close similarity of two graphs, the one of heavy rainfalls in this post, and the one of year-long droughts in an earlier post led me to write a further series of three posts:
More droughts After Heavier Rains I.
More droughts After Heavier Rains II.
More droughts After Heavier Rains III.

* By arrangement with the Licensor, The Dorothea Mackellar Estate, c/- Curtis Brown (Aust) Pty Ltd.

Log of Very Wet Days at Manilla.

Graphical log of days with over 50mm rain

In the 130-year record of very wet days at Manilla, NSW, extreme rainfalls have not become more common recently.


I arranged all daily rainfall readings for Manilla, NSW, from March 1883 to December 2014 in order of rainfall amount, and selected only the 125 readings greater than 50 mm. I plotted the values against the date, expressed in years, to two decimal places. (See Note below.)


The five highest readings

The five highest readings, greater than 110 mm per day, include events that gave rise to two floods and the filling of a reservoir newly-built to store water for irrigation. The highest daily reading, 142.7 mm, came with the highest flood known at Manilla, in 14/01/1964. Thus, the highest flood matches the highest daily rainfall. That is because nearly all the flood-water came down the Manilla River, which flows in a semi-circle, with none of the catchment area far away from the rain-gauge.
These five highest readings seem to fly in an arc above the rest, with a peak near the middle of the graph. The rise and fall of this arc may have no meaning, for there are very long gaps between the events. All the same, it is a fact that there were no readings above 110 mm per day in the decades before 1910 or after 1998.

Periods with no daily readings over 80 mm

Continue reading