Geoff’s solar-passive house at Manilla

View of solar-passive house

Geoff’s solar-passive house

A second high-mass solar-passive house was built in 2009 in Strafford Street Manilla, within 300 metres of my house in Monash Street.
My friend Geoff designed his house and used the same builder that I did. Sadly, after five comfortable years in his house, Geoff has passed away. Thanks to his daughter, I can show you the features of the house.
Thermometers, and power bills show that its performance is similar to mine. That is to say, it is very successful!

In Manilla’s climate of daily and seasonal temperature extremes, Geoff rarely needed to use his low-powered reverse-cycle air conditioner.

Plan of solar-passive house

Strafford Street solar-passive house: plan

Specifications

Dimensions

Length, East-West:     18.28 m
Width, North-South:    9.45 m
Ceiling height:               2.70 m

Area

Room area, Living/Kit/Bed 1/Study:      115.9 m^2
Room area, Bed 2:                                    13.8 m^2
Room area, Bed 3:                                    14.1 m^2
Room area, Bathroom:                              8.6 m^2
Room area, Laundry/Darkroom:               7.7 m^2
Area of walls:                                             12.7 m^2
Total House Area (without patio):       172.8 m^2

Exterior walls

North wall: double brick
East, west, and south walls: 90 mm stud, including 9.61 m reverse brick veneer
Cladding of stud walls: custom orb (horizontal)
Cladding of gable ends: plain roofing panels with 50 mm foam

Interior walls

Single brick:    17.16 m
Stud wall:        11.66 m

Windows (and two glass doors)

All double-glazed 3/6/3 in uPVC frames
(North-facing window area is 16% of the floor area of the house.)
North-facing:           27.00 m^2 (76%)
East-facing:               3.84 m^2 (11%)
South-facing:            4.50 m^2 (13%)
West-facing:             0.00 m^2 (0%)
Total:                      35.34 m^2 (100%) Continue reading

House Thermal Mass Works in Summer Too

House temperature ranges diagram

My house at Manilla, NSW, is in a climate with temperatures that are extreme, but comfortable on the average. To reduce extreme temperatures indoors, the house contains more than a hundred tonnes of thermal mass within a shell of insulation.
The “thermal mass” is the materials, such as bricks, stones, concrete, earth or water, that have high thermal capacity (See Notes below): they take in and give out a lot of heat.
Many people, who can see that having thermal mass inside a house will help to keep it warm in winter, think that the thermal mass will make it hard to keep the house cool in summer. They see many brick and brick-veneer houses in which thermal mass is exposed to the intense heat of the summer sun. In that case, thermal mass material does no good.

In this graph, I have used my last twelve months of temperature data to show the benefit of well-insulated thermal mass in summer as well as in winter.
Outdoor temperature in this year went as low as minus 4.0° Celsius and as high as plus 43.7°: a range of 47.7°. Continue reading

January “Coolth” in a House without Air-Conditioning

I have now 15 years of January average temperature data for my house at Manilla, North-west Slopes, NSW. These graphs show how the house temperature relates to the outdoor (or ambient) maximum, mean, and minimum temperatures.Regression graphs of indoor on outdoor temp in the hottest month

The house is not too hot and not too cold

Solar-Passive House from the NE.

House at Monash St Manilla from NE

In January (the hottest month) the rooms* in this solar-passive house do not heat up much during the day, nor do they cool down much at night. Since the indoor temperature always rises and falls just one or two degrees from the mean, only the mean is shown. Green lines on the graphs, which are drawn to pass through the middle of each cloud of data points, show by how much (on the average) the indoor temperatures have differed from the outdoor maximum, mean, and minimum temperatures. On the middle graph the green line shows that the rooms have been 0.5° cooler than the mean temperature outdoors. The left graph shows that the rooms have been 8.2° cooler than the daily maximum outdoor temperatures. The right graph shows that the rooms have been 7.3° warmer than the daily minimum overnight temperatures.

The design of the house aimed to protect those living there from excessive summer heat. It may seem that reducing the mean temperature by only half a degree is a failure. Not so! The January mean temperature at this site (26.1°) is near the middle of the adaptive comfort zone for this month, and so is the indoor mean temperature (25.6°). The house succeeds in keeping the indoor temperature comfortable in the heat of the day, when that outdoors is an uncomfortable 34 degrees. The high thermal mass that achieves this has the unfortunate result that the minimum indoor temperature overnight (not shown) is some five degrees warmer than the outdoor minimum. However, on average, it is still a comfortable 23.5 degrees. (Curiously, no-one knows the best room temperature for sleep.) Continue reading

July Warmth in an Unheated House

Solar-Passive House from the NW

House at Monash St Manilla from NW

I have fifteen years of temperature data for my high-mass, solar passive, unheated house at Manilla, NSW, Australia. This article has been posted previously here. These graphs show how July temperatures indoors relate to those outdoors. Indoor maxima and minima are not shown, because they are consistently between one and two degrees above and below the indoor mean.

House and ambient temperatures, 15 July months. The house is much warmer (dashed green lines)

In July, the rooms* in this solar-passive house, heated only by the sun, are much warmer than outdoors. This is shown by the green lines on the graphs, which are drawn to pass through the middle of each cloud of data points. The middle graph shows that, as an average over 15 July months, the rooms have been 8.7 degrees warmer than outdoors. The left graph shows that the rooms have even been 1.4 degrees warmer than the daily maximum outdoor temperatures. The right graph shows that the rooms have been nearly sixteen degrees warmer than the daily minimum overnight temperatures. To stay warm in this way the house must have absorbed many hundreds of kilowatt hours of heat from the sun. I have burned a few kilowatt hours of grid power to maintain my comfort, but this cannot have warmed the house by as much as one tenth of a degree in any month. Continue reading

One year of House Performance: II

Graphical 1-year record of outdoor and indoor mean temperatures, subsoil and heat bank.

See also “One Year of House Performance: I”.

Like the graph in the post linked above, this is a log of indoor and outdoor 7-day mean temperatures at my low-energy solar-passive house at Manilla, NSW.
In place of the curves for normal air temperature and comfort zone limits, this graph includes two (raw value) logs of subsoil temperature at 750 mm below the surface. The green trace is the subsoil temperature outdoors in the garden. The orange trace is that below the middle of the main floor slab. The mass of material below the slab is surrounded by insulation at the edge so as to form a “heat bank”.

Continue reading